Деминерализованная вода. Физические свойства. Получение деминерализованной воды

Деминерализованная вода – это очищенная разновидность воды, в которой почти не содержатся сторонние включения, а также примеси.

Вода деминерализованная: что это такое?

Деминерализованная жидкость получается за счет перегонки в специальном устройстве (оно представляется под видом современного варианта дистиллятора) и отличается тем, что в ней не присутствуют почти все существующие разновидности солей. Зачастую она используется для правильного и результативного функционирования разнообразных систем, а также установок.

Любые виды жидкости, вне зависимости от источника получения, в своем составе часто содержат всевозможные варианты минеральных и остальных веществ. Зачастую это не представляет проблемы. Но иногда в определенных технологических процедурах на производстве важно применение именно деминерализованной воды. Но что под ней подразумевается? Вода этого вида получается за счет осуществления такого процесса, как деминерализация, который способствует удалению из жидкости кальция, а также самого магния.

В нынешнее время такая жидкость применяется вместо обычного дистиллированного варианта. Первоначально объяснить все это можно именно тем, что современные электроустановки для очищения часто подвергаются существенным неисправностям. Огромная численность солевого вещества ведет к тому, что на стенках устройства формируется накипь, которая в значительной степени ухудшается качественность жидкости.

Для непосредственного обессоливания жидкости применяется наиболее разнообразное оборудование. Основным элементом здесь принято считать колонки, где располагаются катиониты, а также аниониты. Активность первого элемента напрямую зависит от присутствия карбоксильной, а также сульфоновой группы минералов. Что же касается второго элемента, то при обмене получаются анионы. Сама конструкция оборудования обладает определенного вида резервуарами, предназначающимися для дистиллированной воды, а также щелочного раствора.

В нынешнее время могут применяться наиболее разнообразные виды деминерализации (или обессоливания). Следствием применения жесткой воды принято считать формирование накипи. Ее можно увидеть на поверхности, предназначающейся для нагревания. Дополнительно налет может присутствовать и в местах соприкосновения или контакта. Все это ведет к тому, что сантехническое оборудование слишком быстро изнашивается, а отдельные элементы и трубы в кратчайшее время приходят, как говорится, в негодность. Поэтому очень остро стоит вопрос возможности удаления солей из воды.

Чтобы быстро обессолить воду, допускается применение следующих способов:

    Выпаривание жидкости, в результате чего выполняется концентрация пара. Подобную технологию принято считать весьма энергоемкой. Дополнительно в период работы на испарителе происходит формирование накипи.

    Электролиз. Сама суть процедуры заключается в перемещении ионов в жидкости под воздействием напряжения, которое создается электрическим током. Одновременно с этим сквозь сами мембраны осуществляется прохождение катионов, а также ионов. А вот в самом пространстве уменьшается концентрация солей.

    Для высокопрофессионального очищения лучше отдать предпочтение применению обратного осмоса. Некоторое время назад с использованием этого способа производилось опреснение морской воды. С дополнительным применением фильтрации, а также ионного обмена, подобная методика в значительной степени повышает возможности очищения. Сама суть процедуры заключается именно в использовании полупроницаемой тонкопленочной мембраны с наличием мельчайших пор, под соответствующим давлением, жидкость, водород и углекислый газ проникают внутрь. А вот имеющиеся здесь примеси отправляются в дренаж.

В интернете достаточно много информации по этому поводу, вы можете подробно изучить как процесс подготовки воды, так и устройство и разновидности систем фильтрации. Например, на этом сайте вы можете найти разные фильтры для обессоливания воды http://hydro.systems/ustanovki-dlya-obessolivaniya/ .

Что еще нужно знать о такой воде?

Что такое деминерализованная вода? Это достаточно популярный в последнее время вопрос. Жидкость этого вида пользуется огромнейшей популярностью. Сфера ее применения является достаточно широкой. Достаточно часто она применяется в тепло-, а также электроэнергетике. Полностью очищенная вода применяется и на предприятиях, которые занимаются обработкой металлов.

Большая часть промышленного варианта нефтегазовых организаций собственную деятельность осуществляют только с использованием воды, которая предварительно подвергалась такой процедуре, как обессоливание. Глубочайшая очистка осуществляется для пищевой, фармацевтической, а также медицинской отрасли. С применением такой воды выполняется производство разнообразных лекарственных средств, безалкогольных напитков и остальных видов продукции, в том числе и высококачественных продуктов питания.

В последнее время деминерализованная вода пользуется значительно большей популярностью, если брать в сравнении с дистиллированной жидкостью. Первоначально это связано именно с тем, что электрическое оборудование для дистилляции зачастую слишком быстро приходит в негодность. Огромная численность солей ведет к формированию накипи, что в значительной степени ухудшает условия самой дистилляции, и приводит к уменьшению качественности воды.

Чтобы обессолить воду используются наиболее разнообразные установки. Главный принцип их функционирования заключается именно в том, что жидкость освобождается от присутствующей в составе соли во время прохождения сквозь ионно-обменные смолы. Большая часть подобной разновидности устройств представляется под видом колонки, которая заполняется анионитами, а также катионитами. Дополнительно здесь присутствуют и специальные емкости, которые предназначаются, как для воды и щелочи, так и для кислоты.

Вода, предназначающаяся для электролитов, представляется под видом жидкости, полностью очищенной от нежелательных компонентов и вредных примесей. Зачастую применяется мембранный метод очистки. Вода этого вида применяется в современной промышленности для функционирования разнообразного оборудования и установок, где необходимо применение только действительно чистой жидкости. Она подвергается многоступенчатой процедуре очистки. Поэтому в качестве можно даже не сомневаться. В противоположной ситуации даже небольшая численность солей вызовет выход из строя оборудования.

Для получения чистой деминерализованной воды применяют так называемые ионитовые фильтры (рис. 16). Действие их основано на способности некоторых веществ избирательно связывать катионы или анионы солей. Водопроводную воду вначале пропускают через катионит, связывающий только катионы. В результате получается вода, имеющая кислую реакцию. Затем эту воду пропускают через анионит, связывающий только анионы. Вода, пропущенная через оба ионита, называется деминерализованной (т. е. не содержит минеральных солей).


Рис 15. Колба для хранения дистиллированной воды с защитой от поглощения углерода.

По качеству деминерализованная вода не уступает дистиллированной и часто соответствует бидистилляту

Иониты постепенно насыщаются и перестают действовать, однако их легко регенерировать, после чего они могут быть использованы вновь. Практически регенерацию можно проводить много раз и одним и тем же ионитом очистить большое количество воды. Ионитовые установки широко применяют не только для очистки и деминерализации воды в промышленности, но и в аналитических лабораториях вместо приборов для дистилляции воды.



Рис. 16. Лабораторная установка для получения деминерализованной воды.

Рис. 17. Схема лабораторной установки для получения деминерализованной воды:1 - пробка; 2 - стеклянная вата; 3 - катионит; 4 - трехходовой край; 5 -пробка; 6-анионит; 7 -сливная труба.

Для получения деминерализованной воды можно смонтировать установку, которая позволит получать по 20-25 л/ч воды. Установка (рис. 17) состоит из двух трубок (колонок) высотой по 70 см и диаметром около 5 см. Колонки могут быть стеклянными, кварцевыми, а еще лучше - из прозрачных пластиков, например из плексигласа. В колонки помещают по 550 г ионообменных смол: в одну помещают катионит (в Н+-форме),а в другую-анионит (в OrT-форме). В пробирке / колонки с катионитом 3 имеется отводная трубка, которую резиновой трубкой соединяют с водопроводным краном.

Воду, прошедшую через катионит, направляют во вторую колонку с анионитом. Скорость протекания воды через обе колонки должна быть не больше 450 см3/мин. В первых порциях воды, пропущенной через катионит, необходимо установить кислотность. Пробу воды отбирают через трехходовой кран 4, соединяющий колонки. Предварительное установление кислотности воды необходимо для последующего контроля качества деминерализованной воды.

Поскольку иониты постепенно насыщаются, нужно контролировать работу установки. После того как через нее пропустят около 100 л воды или она проработает непрерывно в течение 3,5 ч, следует взять пробу воды, прошедшей через колонку с катионитом..Затем 25 см3 этой воды титруют 0,1 н. раствором NaOH по метиловому оранжевому. Если кислотность воды резко уменьшилась по сравнению с результатом первой пробы, пропускание воды следует прекратить и провести регенерацию ионитов. Для -рееенерации катионита его высыпают из колонки в большую банку, заливают 5%-ным раствором HCl и оставляют в этом растворена ночь. После этого кислоту сличают и катионит промывают дистиллированной или деминерализованной водой до тех пор, пока проба на Сl- ионы в промывных водах не станет отрицательной. Пробу делают так: на часовое стекло помещают 2-3 капли промывной воды и добавляют к ней каплю 0,01 н. раствора AgN03. При отрицательной реакции муть не образуется.

Промытый катионит снова вводят в колонку. Анионит для регенерации высыпают в большую банку, заливают 2%-ным (0,5 н.) раствором NaOH и оставляют на ночь. Щелочь затем сливают, а анионит тщательно отмывают дистиллированной или деминерализованной водой до нейтральной реакции промывных вод при испытании фенолфталеином. . " "

В лаборатории полезно иметь две такие установки: одна находится в работе, а другая - резервная. Пока регенерируют одну установку, другая - в работе.

Из ионообменных смол *, изготовляемых в СССР, в качестве катионитов можно использовать иониты марок КУ-2, СБС, СБСР, МСФ или СДВ-3.

Для получения особо чистой воды, по качеству превосходящей бидистиллят, рекомендуется применять иониты КУ-2 и ЭДЭ-10П**. Вначале иониты с зернением около 0,5 мм переводят соответственно в H- и ОН-формы путем обработки КУ-2 1%-ным раствором соляной кислоты, а ЭДЭ-10П 3%-ным раствором едкого натра, пот еле чего хорошо промывают. Затем их смешивают в объемном соотношении КУ-2: ЭДЭ-10П = 1,25: 1 и смесь помещают в колонку из плексигласа диаметром около 50 мм и высотой 60-70 см.

Дно и верхняя пробка колонки должны быть также из плексигласа, водоподводящая и сточная трубки - из полиэтилена или же из алюминия.

Для получения особо чистой воды применяют обычную дистиллированную воду, которую пропускают через колонку со смесью ионитов. Один килограмм такой смеси может очистить до 1000 л дистиллированной воды. Очищенная вода должна иметь удельное сопротивление 1,5-2,4*10 -7 1/(ом*см). Эту смесь ионитов не рекомендуется применять для деминерализации водопроводной воды, так как иониты при этом быстро насыщаются. Когда удельное сопротивление очищенной воды начнет уменьшаться, очистку воды прекращают, а иониты регенерируют. Для этого смесь ионитов высыпают из колонки на лист фильтровальной бумаги, разравнивают, закрывают другим листом такой же бумаги оставляют сохнуть. Или же иониты из колонки пересыпают в фарфоровую воронку Бюхнера и отсасывают на ней до получения воздушно-сухой массы.

Воздушно-сухую массу помещают в делительную воронку соответствующей емкости так, чтобы смесь ионитов занимала около "Д. После этого в делительную воронку добавляют 3%-ный раствор NaOH, заполняя воронку приблизительно на 3Д, и быстро перемешивают. При этом происходит мгновенное разделение ионитов. Нижний слой, содержащий катионит КУ-2, спускают через кран делительной воронки в сосуд с водой и многократно промывают с применением декантации до тех пор, пока проба промывной воды не даст нейтральную реакцию при добавлении I-2 капель фенолфталеина.

Верхний слой, содержащий анионит ЭДЭ-10П, сливают через горло делительной воронки также в сосуд с водой. Иониты регенерируют, как описано выше, каждый ионит отдельно, и после этого снова применяют их для очистки воды.

Вода – это жизнь. Все мы с детства знаем, что наш организм практически целиком состоит из воды. Мы пьем много воды, чтобы быть здоровыми, и всегда стараемся пить только чистую, безопасную воду. Но почему же тогда вода глубокой очистки вредна для организма ? Что такое деминерализованная вода и зачем она нужна?

Вода глубокой очистки

Деминерализованная или деионизированая вода – это вода глубокой очистки, в которой понижено содержание солей. От дистиллированной ее отличает, то, что неэлектролиты в ней присутствуют.

На сегодняшний день существует множество способов получения деионизированной воды. Для разных нужд необходима вода более или менее глубокой очистки, поэтому разные методы применяются для разных целей.

Выпаривание

Суть метода заключается в том, что загрязнённая вода выпаривается. При этом примеси остаются , а чистая вода конденсируется. Этот метод очень энергетически затратен, но позволяет удалить и неэлектролитические примеси.

Электролиз

Способ отчистки воды под действием электрического поля. Поле действует на свободные ионы, растворенные в воде, и притягивает их, а вода становится чище.

Обратный осмос

Принцип очистки заключается в том, что воду под большим давлением пропускают через полупроницаемую мембрану , мельчайшие поры которой, пропускают молекулы воды, но задерживают примеси. Этот метод в сочетании с остальными позволяет получить бидистиллированную воду, которая считается самой чистой на сегодняшний день.

Области применения

В любой воде содержатся минеральные соли , мы даже часто покупаем специальную минеральную воду с повышенным содержанием некоторых солей.

Но мы также знаем, что жесткая вода или вода с повышенным содержанием солей калия и кальция, малопригодна для бытовых нужд. При стирке она образует осадок, который выводит из строя стиральные машины, а на чайнике появляется в виде накипи.

Но если для быта нам необходимо лишь слегка уменьшить содержание солей, то для фармакологической и пищевой промышленности. Такая вода необходима на нефтехимических предприятиях и производствах, занимающихся обработкой металлов.

Еще одна группа, использующая деминерализованную воду – автомобилисты . Они доливают воду глубокой отчистки в антифриз. В охлаждающей жидкости содержится вода, но при смене погоды она может испаряться. Так же такая вода необходима для работы омывателя стекол

Лишь обессоленная вода может являться диэлектриком, так как ионы солей в растворе способны проводить электричество. Это открывает еще одно поле использования: в научно-исследовательских целях. Деминерализованная вода нашла свое применения в области энергетики .

Последнее время деионизированная вода более популярна, чем дистиллированная. Устройства для дистилляции быстрее изнашиваются из-за наличия солей в жидкости, в то время как деминерализация менее затратна.

Вред от потребления обессоленной воды

Если деминерализованная вода полезна для приборов и машин, то влияние на человека не так однозначно. Вода глубокой отчистки способна вымывать из организма соли, порой это бывает необходимо. Например, доказано положительное влияние умеренного потребления обессоленной воды при:

  • обнаружении отложений в печени;
  • нарушении работы почек;
  • диабете;
  • аллергии;
  • интоксикации и отравлениях.

Помимо вредных примесей в воде присутствуют также и полезные, но вода глубокой очистки лишена любых примесей, как часто выражаются врачи: это «мертвая» вода .

Некоторые примеси необходимы для нормальной работы организма, но деионизированная вода не содержит этих примесей и не поддерживает реакции. К тому же такая вода невкусная, она абсолютно пресная и не устраняет чувство жажды.

Регулярное употребление воды глубокой отчистки в пищу может привести к разрушению слизистой оболочки желудочно-кишечного тракта. Это показывают эксперименты на крысах.

Однозначно доказано пагубное влияние на процесс обмена минеральными веществами при употреблении обессоленной воды. Эта вода вымывает минеральные вещества из биологических жидкостей. Что влияет на гормональный фон и производство красных кровяных телец. В то же время, увеличивается выделение воды из организма.

При частом употреблении слабо минеральной воды уменьшается концентрация кальция и магния в организме. Кальций является строительным веществом многих костей и тканей организма, а магний необходим для протекания более чем трехсот биологических процессов.

Также было доказано, что при регулярном потреблении деминерализованной воды возрастает поступление токсичных металлов . «Мертвая» вода обладает слабыми защитными свойствами.


Предназначена прежде всего для нормальной и экономичной работы систем и установок, использующих особо чистую воду. Деминерализованная вода -это вода из которой удалены практически все соли. Обессоленная вода широко используется в промышленности, медицине, при эксплуатации различных приборов, устройств и оборудования, для хозяйственно-бытовых нужд и других целей.

Цены на воду приведены с учётом стоимости ее доставки в Екатеринбурге.
При первом заказе воды дополнительно выкупается многооборотная тара.

В ряде случаев присутствующие в воде соли даже в небольших количествах могут создавать определённые проблемы при использовании воды в производстве или быту. Целью получения деминерализованной, т.е.обессоленной воды является максимально возможное при разумных затратах извлечение из исходной воды, содержащихся в ней минеральных веществ.

Широкое распространение получили способы уменьшения содержания в воде солей жёсткости с помощью ионообменных установок и снижения общего солесодержания методом дистилляции. Умягчённая вода в первом случае и дистиллированная - во втором широко применяются в частности в теплоэнергетике и медицине. Первый способ относительно дёшев и производителен,но убирая соли кальция и магния он оставляет остальные и даже увеличивает их концентрацию. Дистиллированная вода очень чистая, практически обессоленная,но дорогая.Высокая трудоёмкость и себестоимость ограничивают её широкое использование.

Деминерализованная вода может быть получена также путем многостадийной глубокой очистки. Это достигается путем использования на заключительных её этапах наиболее эффективных мембранных установок обратного осмоса. Суммарное содержание минеральных веществ при этом снижается по сравнению с исходным в сотни раз. В этой связи очистка воды методом обратного осмоса может оказаться наиболее рентабельным способом её деминерализации, лишённым к тому же недостатков как ионнообменных, так и дистилляционных технологий.

Деминерализованная посредством обратного осмоса (обратноосмотическая) вода «Кристальная-деминерализованная» производится компанией ООО «Питьевая вода» в соответствии с утверждёнными техническими условиями (ТУ 0132-003-44640835-10) путём глубокой доочистки на промышленных обратноосмотических мембранных установках предварительно подготовленной воды из подземного источника (скв. 1р Института геофизики УрО РАН). Подготовка воды включает её предварительную механическую очистку (фильтрацию) и ультрафиолетовую бактерицидную обработку (обеззараживание).

Вода «Кристальная-деминерализованная» по физико-химическим показателям должна соответствовать приведенным в таблице требованиям, установленным ТУ 0132-003-44640835-10

Наименование показателя

Величина допустимого уровня

НД на методы исследования

1. Массовая концентрация остатка после выпаривания, мг/дм3 , не более

ГОСТ 6709-72

2. Массовая концентрация нитратов (NО3) , мг/дм3 , не более

ГОСТ 6709-72

3. Массовая концентрация сульфатов (SO4), мг/дм3, не более

ГОСТ 6709-72

4. Массовая концентрация хлоридов (Сl), мг/дм3, не более

ГОСТ 6709-72

5. Массовая концентрация алюминия (Аl), мг/дм3, не более

ГОСТ 6709-72

6. Массовая концентрация железа (Fe), мг/дм3, не более

ГОСТ 6709-72

7. Массовая концентрация кальция (Сa), мг/дм3, не более

ГОСТ 6709-72<

8. Массовая концентрация меди (Сu), мг/дм3, не более

ГОСТ 6709-72

9. Массовая концентрация свинца (Рb), мг/дм3, не более

ГОСТ 6709-72

10. Массовая концентрация цинка (Zn), мг/дм3, не более

ГОСТ 6709-72

11. Массовая концентрация веществ, восстанавливающих КМnО4, мг/дм3, не более

ГОСТ 6709-72

12. рН воды

ГОСТ 6709-72

13. Удельная электрическая проводимость при 20 °С, См/м, не более

ГОСТ 6709-72

14. Гидрокарбонаты, мг/дм3, не более

РД 52.24.493-2006

15. Щёлочность, мг-экв/дм3

РД 52.24.493-2006

16. Жёсткость общая, град.Ж, не более

ГОСТ Р 52407-2005

17. Натрий, мг/дм3, не более

ГОСТ Р 51309-99

18.Магний, мг/дм3, не более

ГОСТ Р 51309-99

Вследствие крайне низкого солесодержания вода «Кристальная-деминерализованная» не пригодна для употребления в питьевых целях. Она предназначена прежде всего для нормальной и экономичной работы систем и установок, связанных с нагревом и испарением воды и использующих особо чистую воду.

Наибольшее применение деминерализованная вода находит в различных технических, медицинских и других установках, а также в хозяйственно-бытовых целях. Деминерализованная (обессоленная) вода рекомендуется для офисных и домашних увлажнителей воздуха, парогенераторов и утюгов, пароконвекторов, пароварок, кофемашин и прочих установок и устройств. Она используется для разбавления теплоносителей в системах отопления, при приготовлении незамерзающих, охлаждающих и других жидкостей,для заливки в аккумуляторы и пр.

Вследствие высокой растворяющей способности эта вода применяется при чистовой мойке стекол и стеклопакетов, зеркал, ювелирных и иных изделий, подготовки металлических и других поверхностей при порошковом окрашивании. Деминерализованная вода используется в парфюмерии и медицине при приготовлении различных гелей и растворов, во многих установках для смазывания и охлаждения трущихся деталей и частей (в частности, стоматологических),при паровой стерилизации инструментов в автоклавах, в приборах ультразвуковой терапии (например, ингаляторах.

В ряде производств деминерализованная вода используется для охлаждения и отмывки изделий (производства литьевых изделий - дроби, гальванические производства, цеха нанесения покрытий),для заполнения охлаждающих и промывных контуров обессоленной водой и поддержания заданного качества циркулируемой воды с помощью подпитки (т.е.добавления) новых порций деминерализованной воды.

Деминерализованная вода применяется при восстановлении струйных картриджей, когда возникают неприятные случаи сгорания контактных групп и печатающего элемента. Одной их главных причин при этом является использования водопроводной или недостаточно очищенной воды для промывки внутренностей струйного картриджа и печатающей головки.

Вода с солями, является хорошим проводником, что не очень хорошо для контактных групп струйного картриджа. С другой стороны,как отмечают специалисты, примеси металлов содержащиеся в обычной воде вступают в реакцию с танталовыми спиралями печатающей головки, тем самым возрастает вероятность выхода из строя самого печатающего элемента в целом. При изготовлении стеклопакетов, если стёкла перед упаковкой отмывать обычной водой, на стекле после высыхания воды остаются разводы соли,которые после упаковки в пакет никак не убрать. Поэтому необходимо отмывать стекло с помощью горячей деминерализованной воды. Обессоленная вода не оставляет соли после высыхания на стекле. Соответственно, в результате в пакете стеклопакет будет прозрачным и без солевых потёков.

Конкретный минерально- солевой состав любой воды (натуральной, в т.ч. артезианской и родниковой, очищенной, водопроводной, кондиционированной различными искусственными добавками,например, йодом и фтором и т.д.) в известной степени определяет вкус и послевкусие приготовленных на этих видах воды пищи и напитков. В то же время содержание солей и других примесей, определяющих вкус и другие потребительские свойства природной и водопроводной воды, непрерывно изменяется в пространстве и времени. Это обстоятельство затрудняет управление качеством и сравнительную оценку производимой из этой воды пищи и напитков.Необходимость поддержания стабильного состава и вкуса многих напитков (и не только дорогого алкоголя или дешёвого пива!) вынуждает их производителей максимально снижать минерализацию исходной питьевой воды.

Именно поэтому обессоленная деминерализованная вода, обладающая к тому же высокой экстрагирующей способностью, может использоваться в кулинарии при приготовлении высококачественных и диетических блюд, для заваривания элитных сортов чая и кофе, приготовления настоев и отваров целебных трав с целью подчёркивания и сохранения их индивидуального природного аромата и полезных свойств.

При кипячении жесткой воды на ее поверхности образуется пленка, а сама вода приобретает характерный привкус. При заваривании чая или кофе в такой воде может выпадать бурый осадок. К тому же диетологами установлено, что в жесткой воде хуже разваривается мясо. Связано это с тем, что соли жесткости вступают в реакцию с животными белками, образуя нерастворимые соединения. Это приводит к снижению усвояемости белков. Замечено, что пища, приготовленная на деминерализованной воде выглядит аппетитнее, не теряет своей привлекательной формы, отличается более насыщенным и богатым вкусом. При приготовлении напитков и блюд из концентратов требуется меньшее (до 20%) количество сухого концентрата для получения готового продукта.

Деминерализованная вода, обладая повышенной проницаемостью, отлично удаляет грязевые, жировые пятна на тканях, посуде, ваннах, раковинах, позволяет экономить значительный объем моющих, чистящих средств (до 90%), время стирки и уборки квартиры снижается (до 15%), срок жизни белья увеличивается (на 15%).

Отложение накипи является причиной до 90% аварий водонагревателей. Накипь откладываясь на стенках водонагревательных устройств (бойлеров, колонок и т.п.), а также на стенках труб линии горячего водоснабжения, нарушает процесс теплообмена. Соответственно нагревательные элементы перегреваются, идет перерасход электроэнергии и газа.Исследования показали, что при использовании деминерализованной воды экономия на электрических водонагревателях или газовом оборудовании составляет 25-29%.

Вода, содержащая железо, при непродолжительном контакте с кислородом приобретает желтовато-бурую окраску, а при содержании железа выше 0,3 мг/л вызывает появление ржавых потеков на сантехнике и пятен на белье при стирке. При использовании деминерализованной воды сантехника остаётся чистой. Деминерализованная вода не зашлаковывает водопроводные коммуникации, противостоит коррозии и, растворяя солевой налет, вымывает его, продлевая жизнь сантехнике почти вдвое.

Условия хранения:

Хранить в затемнённом месте при температуре от +5 о С до +20 о С и относительной влажности воздуха не более 75%.

Срок годности : 18 месяцев с даты розлива.

Изготовитель : ООО «Питьевая вода», Екатеринбург.

Деминерализованную (обессоленную) воду получают из водопроводной питьевого качества, предварительно подвергнутой тщательному анализу, так как в ней содержится значительное количество растворенных и взвешенных веществ.

Деминерализация воды (освобождение от присутствия нежелательных катионов и анионов) проводится с помощью ионного обмена и методов разделения через мембрану.

Ионный обмен основан нa использовании ионитов - сетчатых полимеров разной степени сшивки, с гелевой или микропористой структурой, ковалентно связанных с ионогенными группами. Дис­социация этих групп в воде или растворах дает ионную пару - фиксированный на полимере ион и подвижный противоион, который обменивается на ионы одноименного заряда (катионы или анионы) из раствора. Отечественная промышленность выпускает ионообменные смолы:

Ионообменные катиониты (КУ-2, КУ-2-8ч, СК-3), которые способны обменивать свой ион водорода на катионы (Mg 2+ ; Ca 2+ и др.); В Н-форме (катионит с подвижным атомом водорода) они обмени­вают все катионы, содержащиеся в воде.

Ионообменные аниониты (АВ-17-8ч, АВ-17-10п), обменива­ющие свой гидроксил (ОН~) на анионы: SO4"; Сl и др. в ОН-форме (анионит с подвижной гидроксильной группой) обменивают все анионы, содержащиеся в воде.

Каждый килограмм смолы способен очистить до 1000 л воды и более. Качество воды контролируют по электропроводности. Как только ионит прекращает связывать ионы, электропроводность возрастает.

Катиониты - смолы с кислой группой (карбоксильной или сульфоновой). Для их регенерации (восстановления способности обменивать ион водорода) применяют 5%-ный раствор хлористо­водородной кислоты.

Аниониты - чаще всего продукты полимеризации аминов с формальдегидом. Для регенерации используют 5 %-ный раствор натрия гидрокарбоната или натрия гидрооксида.

Существует два типа колоночных ионообменных аппаратов: с раздельными и со смешанными слоями катионов и анионов. Ап­параты 1-го типа состоят из двух последовательно расположенных колонок, первая из которых заполняется катионитами, а вторая - анионитами. Аппараты 2-го типа состоят из одной колонки, за­полненной смесью этих ионообменных смол. Питьевую воду пода­ют в колонки снизу вверх, через слой катионита, затем на слой анионитов, фильтруют от частиц разрушенных ионообменных смол и нагревается в теплообменнике до 80 - 90 °С.

Ионообменные смолы могут быть гранулированными, в виде волокон, губчатых смол, жгутов (лент), последовательно переме­щающихся через сорбционную ванну, промывочную ванну, за­тем через бак регенерации и отмывки. Ионообменные волокна изнашиваются медленнее, чем гранулированные. Меньше подвер­жены разрушению магнитные гранулы.



Ионообменная технология обеспечивает классическое обессоливание воды и является экономной. Однако имеет ряд недостат­ков: 1) ионообменные смолы требуют периодической регенера­ции; 2) при длительном использовании могут стать субстратом для развития микроорганизмов, поэтому требуется периодиче­ская дезинфекция используемых смол.

Ионообменная установка состоит из 3-5 пар катионитовых и анионитовых колонок (рис.1). Водопроводная вода

Обессоленная вода

Рис. 1. Принцип работы ионообменной установки

Среди методов разделения через мембрану можно выделить: обратный осмос, ультрафильтрацию, диализ, электродиализ, испарение через мембрану. Эти методы основаны на использовании перегородок, обладающих селективной проницаемостью, благодаря чему возможно получение воды без фазовых и химических превращений.

Обратный осмос (гиперфильтрация) - переход растворителя (воды) из раствора через полупроницаемую мембрану под действием внешнего давления. Избыточное рабочее давление солевого раствора намного больше осмотического. Движущей силой обратного осмоса называют разность давлений по обе стороны мембраны. Для разделения применяют мембраны двух

1. Пористые -Селективная проницаемость основана на адсорбции молекул воды поверхностью мембраны и ее порами. УАМ 50 м, УАМ 100 м, УАМ 150 м - 125 А, УАМ 200 м УАМ 300 м и УАМ 500 м.

2. Непористые диффузионные мембраны образуют водород­ные связи с молекулами воды на поверхности контакта. Под дейст­вием избыточного давления эти связи разрываются, молекулы воды диффундируют в противоположную сторону мембраны, а на образовавшиеся места проникают следующие. Таким образом, вода как бы растворяется на поверхности и диффундирует внутрь слоя мембраны. Выпускаются гиперфильтрационные ацетатцеллюлозные мембраны МГА-80, МГА-90, МГА-95, МГА-100.



Установка обратного осмоса состоит из насоса высокого давле­ния, одного или нескольких пермиаторов и блока регулирования, поддерживающего оптимальный рабочий режим. Каждый из пер­миаторов содержит большое количество (до 1 млн) полых воло­кон (мембран). В качестве мембран используют эфиры целлюлозы (ацетаты), полиамиды и др.

Воду подают в пермиатор, омывая волокна с внешней сторо­ны. Под давлением выше осмотического она проникает внутрь полых трубок, т.е. уходит от солей, собирается внутри трубок, а «концентрат» солей выливается в сток.

По ходу движения воды в пермиатор устанавливают угольный фильтр для удаления хлора.

Методом обратного осмоса удаляются более 90 % солей, ВМВ, бактерии и даже некоторые вирусы.

Метод имеет много положительных свойств: простота; произ­водительность, не зависящая от солесодержания в исходной воде; широкий выбор полупроницаемых мембран; экономичность - из 10 л питьевой воды получается 7,5 л воды очищенной; затраты энергии в 10-16 раз меньше, чем при дистилляции. Данный принцип лежит в основе работы промышленных уста­новок «Роса», УГ-1 и УГ-10.

Для получения сверхчистой воды сочетают методы ионного обмена и обратного осмоса.

Улътрафильтрация - процесс мембранного разделения растворов высокомолекулярных соединений под действием разности давлений. Данный метод используют, когда осмотическое давление несоизмеримо мало в сравнении с рабочим давлением. Движущей силой является разность давлений - рабочего и атмосферного. Ультрафильтрация воды через мембрану с диаметром пор 0,01 мкм позволяет на 100% освободить питьевую воду от солей, органи­ческих и коллоидных веществ и микроорганизмов.

Электродиализ. Механизм разделения основан на направлен­ном движении ионов в сочетании с селективным действием мемб­ран под влиянием постоянного тока. В качестве ионообменных мембран применяются:

Катионитовые марки МК-40 с катионитом КУ-2 в Na-форме и основой на полиэтилене высокой плотности и МК-40л, армированная лавсаном;

Анионитовые марки МА-40 с анионитом ЭДЭ-10П в Сl-форме на основе полиэтилена высокой плотности и МА-41л - 1 мембрана с сильноосновным анионитом АВ-17, армированная лавсаном.

Воду помещают в ванну, разделенную на три части селективными ионообменными мембранами. Мембраны, имеющие отрицательный заряд (катиониты) проницаемы для катионов, имеющие положительный за­ряд (аниониты) - для анионов. Ионообменные мембраны не сор­бируют ионы, а селективно пропускают их.

Через ванну пропускают постоянный электрический ток, все ионы солей, находящихся в воде, начинают передвигаться к мемб­ранам, имеющим противоположный заряд: катионы - к катоду, анионы - к аноду. Ионы солей, удаленные из камеры обессоливания, концентрируются соответственно в соседних камерах. Ос­таточное солесодержание 5 - 20 мг/л.

Выпускаются электродиализные установки ЭДУ-100 и ЭДУ-1000 производительностью 100 и 1000 м 3 /сут.

Испарение через мембрану. Растворитель проходит через мембрану и в виде пара удаляется с ее поверхности в потоке инертного газа или под вакуумом. Для этой цели используют мембраны из целлофана, полиэтилена, ацетатцеллюлозы.

Преимущество мембранных методов, все больше внедряемых в производство, - значительная экономия энергии. Также сравни­тельно легко возможно регулировать качество воды. Недостатком методов считают опасность концентрационной поляризации мембран и пор, что может вызвать прохождение нежелательных ионов или молекул в фильтрат.

Деминерализованная вода используется для мойки стеклодрота, ампул, вспомогательных материалов и питания аквадистилляторов при получении воды очищенной (дистиллированной) и воды для инъекций.

Получение воды очищенной (дистиллированной )

Вода очищенная ФС 42-2619-89 (Aqua purificata), используемая в производстве инъекционных лекарственных форм, должна быть максимально химически очищена и отвечать соответствующей НТД. В каждой серии полученной воды обязательно проверяют значение рН (5,0-6,8), наличие восстанавливающих веществ, угольного ангидрида, нитратов, нитритов, хлоридов, сульфатов, кальция и тяжелых металлов. Допускается наличие аммиака - не более 0,00002%, сухого остатка - не более 0,001%. Для непрерывной оценки качества получаемой воды используется измерение удельной электропроводности. Однако метод недостаточно объективен, так как результат зависит от степени ионизации молекул воды и примесей.

Воду очищенную получают методом дистилляции, перегонки водопроводной или деминерализованной воды в дистилляционных аппаратах различных конструкций. Основными узлами любого дистилляционного аппарата являются испаритель, конденсатор и сборник. Сущность метода перегонки заключается в том, что исходную воду заливают в испаритель и нагревают до кипения. Происходит фазовое превращение жидкости в пар, при этом водяные пары направляются в конденсатор, где конденсируются и в виде дистиллята поступают в приемник. Такой метод требует затрат большого количества энергий, поэтому в настоящее время на некоторых заводах получают воду, очищенную методами разделения через мембрану.

Получение воды для инъекций в промышленных условиях

Согласно требованиям ФС 42-2620-89 вода для инъекций (Aqua pro ingectionibus) должна удовлетворять всем требованиям, предъявляемым к воде очищенной, а также должна быть стерильной и апирогенной. Стерильность воды определяется методами, изложенными в статье «Испытания на стерильность» ГФ XI издания, с. 187-192. Испытание пирогенности воды проводят биологическим методом, приведенным в статье «Испытание на пирогенность» ГФ XI издания, с. 183-185.

Оборудование для получения воды очищенной и воды для инъекций

В промышленных условиях получение воды для инъекций и воды очищенной осуществляют с помощью высокопроизводи­тельных корпусных аппаратов, термокомпрессионных дистилля­торов различных конструкций и установок обратного осмоса.

К колонным многокамерным аппаратам относятся прежде всего многоступенчатые аппараты. Установки подобного типа для получения очищенной воды бывают различной конструкции. Производительность крупных моделей достигает 10 т/ч.

Чаще всего применяются трехступенчатые колонные аппараты с тремя корпусами (испарителями), расположенными вертикально или горизонтально. Особенность колонных аппаратов в том, что только первый испаритель нагревается паром, вторичный пар из первого корпуса поступает во второй в качестве греющего, где конденсируется и получается дистиллированная вода. Из второго корпуса вторичный пар поступает в третий - в качестве греющего, где также конденсируется. Таким образом, дистиллированную воду получают из 2-го и 3-го корпусов. Производительность такой установки до 10 т/ч дистиллята. Качество получаемого дистиллята хорошее, так как в корпусах достаточная высота парового пространства и предусмотрено удаление капельной фазы из пара с помощью сепараторов.

Для обеспечения апирогенности получаемой воды необходимо создать условия, препятствующие попаданию пирогенных веществ в дистиллят. Эти вещества нелетучи и не перегоняются с водяным паром. Загрязнение ими дистиллята происходит путем переброса капелек воды или уноса их струей пара в холодильник. Поэтому конструктивным решением вопроса повышения качества дистил­лята является применение дистилляционных аппаратов соответ­ствующих конструкций, в которых исключена возможность пере­броса капельно-жидкой фазы через конденсатор в сборник. Это до­стигается устройством специальных ловушек и отражателей, высо­ким расположением паропроводов по отношению к поверхности парообразования. Целесообразно также регулировать обогрев испа­рителя, обеспечивая равномерное кипение и оптимальную скорость парообразования, так как чрезмерный нагрев ведет к бурному ки­пению и перебросу капельной фазы. Проведение водоподготовки путем обессоливания также уменьшает пенообразование и, следо­вательно, выделение капелек воды в паровую фазу.

На некоторых химико-фармацевтических предприятиях воду для инъекций получают с помощью дистиллятора «Mascarini» -произво­дительность этого аппарата 1500 л/ч. Он снабжен прибором контро­ля чистоты воды, бактерицидными лампами, воздушными фильтра­ми, прибором для удаления пирогенных веществ, а также установкой двойной дистилляции воды производительностью 3000 л/ч.

Трехкорпусной аквадистиллятор «Финн-аква» (Финляндия) функционирует за счет использования деминерализованной воды(рис. 2).

Рис. 2. Аквадистиллятор «Финн-аква»:

1 - регулятор давления; 2 - конденсатор-холодильник; 3 - теплообменник

камер предварительного нагрева; 4 - парозапорное устройство; 5 - зона

испарения; 6,7,8 - труба; 9 – теплообменник

Вода поступает через регулятор давления в конденсатор, проходит теплообменники камер предварительного нагрева, а после нагревания поступает в зону испарения, состоящую из системы трубок, обогреваемых внутри греющим паром. Нагретая вода подается на наружную поверхность обогреваемых трубок в виде пленки, стекает по ним и нагревается до кипения.

В испарителе за счет поверхности кипящих пленок создается интенсивный поток пара, движущийся снизу вверх со скоростью 20- 60 м/с. Центробежная сила, возникающая при этом, обеспечивает стекание капель в нижнюю часть корпуса, прижимая их к стенкам. Наиболее совершенными в настоящее время считаются термо­компрессионные дистилляторы (рис. 3).

Их преимущество перед дистилляторами других типов заключается в том, что для получения 1 л воды для инъ­екций необходимо израсходовать 1,1 л холодной водопроводной воды. В других аппаратах это соотношение составляет 1:9- 1:15. Принцип работы аппарата заключается в том, что образую­щийся в нем пар, перед тем как поступить в конденсатор, прохо­дит через компрессор и сжимает­ся. При охлаждении и конденса­ции он выделяет тепло, по вели­чине, соответствующей скрытой теплоте парообразования, которая. затрачивается на нагревание ох­лаждающей воды в верхней части трубчатого конденсатора. Питание аппарата водой осуществляется в направлении снизу вверх, выход дистиллятора - сверху вниз. Про­изводительность дистиллятора до 2,5 т/ч. Качество получаемой апирогенной воды высокое, так как капельная фаза испаряется на стенках трубок испарителя. Нагревание и кипение в трубках происходит равномерно, без перебросов, в тонком слое. Задерживанию капель из пара способст­вует также высота парового пространства. Недостатки аппарата - сложность устройства и эксплуатации.

Рис. 3. Принцип работы термокомпрессионного дистиллятора: 1 - конденсатор-холодильник; 2 - паровое пространство; 3 - компрессор; 4 - регу­лятор давления; 5 - камера предвари­тельного нагрева; 6* - трубки испарителя

Наиболее широко распространенным до последних лет мето­дом получения воды для инъекций была дистилляция. Такой метод требует затрат большого количества энергии, что является серьезным недостатком. Среди других недостатков следует отме­тить громоздкость оборудования и большую занимаемую им пло­щадь; возможность присутствия в воде пирогенных веществ; сложность обслуживания.

Этих недостатков лишены новые методы мембранного разде­ления, все больше внедряемые в производство. Они протекают без фазовых превращений и требуют для своей реализации значительно меньших затрат энергии, сопоставимых с минимальной теоретически определяемой энергией разделения.

Мембранные методы очистки основаны на свойствах перегородки (мембраны), обладающей селективной проницаемостью, благодаря чему возможно разделение без химических и фазовых превращений. Для получения воды для инъекций в практическом отноше­нии представляют интерес следующие аппараты.

С использованием принципа мембранной очистки работает установка высокоочищенной воды «Шарья-500». Производитель­ность ее по питающей воде 500 л/ч, получаемая после этой установки высокоочищенная вода, свободная от механических примесей, органических и неорганических веществ. Она применяется в производстве иммунобиологических бактерийных препаратов и для приготовления инъекционных растворов.

Установка (УВВ) включает блоки предфильтрации, обратного осмоса и финишной очистки.

Блок фильтрации предназначен для очистки питьевой водопроводной воды от механических примесей размером 5 мкм и включает фильтр катионитный и два фильтра угольных, работающих параллельно или взаимозаменяемо.

Блок обратного осмоса работает при давлении не ниже 15 атм. Поступающая на блок вода разделяется после фильтрования на два потока, один из которых проходит сквозь обратноосмотические мембраны, а второй поток, проходящий вдоль поверхности мембра­ны и содержащий повышенное количество солей (концентрат) отводится из установки. Для обеспечения работы данного блока необходимо, чтобы соотношение объемов воды на подаче, сливе и проходящей через мембрану составляло 3:2:1 соответственно. Таким образом, для получения 1л высокоочищенной воды необходимо израсходовать приблизительно 3 л воды водопроводной. При этом скорость слива достаточно высока, что устраняет вредное влияние концентрированной поляризации на работу установки.

В блоке обратноосмотическом осуществляется очистка воды от растворимых солей, органических примесей, твердых взвесей и бактерий.

После блока обратного осмоса вода поступает на блок финишной очистки, включающей ионообмен и ультрафильтрацию. Ионообменная очистка воды осуществляется с помощью последо­вательно соединенных фильтров - катионного и анионного, за которыми установлен смешанный катионно-анионный фильтр, где происходит очистка от оставшихся катионов и анионов.

Окончательная доочистка воды проводится в двух ультра­фильтрационных аппаратах с полыми волокнами АР-2,0, предназ­наченных для отделения органических микропримесей (коллоид­ных частиц и макромолекул).Для производства иммунных и бактерийных препаратов не всегда пригодна вода для инъекций, полученная дистилляцией. Поэтому часто возникает необходимость в доочистке воды, которая может быть проведена с помощью установки «Супер-Кью». Производительность - 720 л/ч, вода пропускается через угольный фильтр, где происходит освобождение от органических веществ; затем - через смешанный слой ионитов; после чего поступает на патронный бактериальный фильтр с размером пор 0,22 нм (0,00022 мкм). Далее вода поступает на обратноосмотический модуль, где происходит удаление пирогенных веществ. Полученную воду используют для приготовления инъекционных лекарствен­ных форм, а концентрат используют как техническую воду или повторно отправляют на очистку.

Мембранные методы получения высокоочищенной воды для инъекций широко используются в мировой практике и признаны экономически целесообразными и перспективными.